Tilting preserves finite global dimension
نویسندگان
چکیده
منابع مشابه
Vanishing of Ext, Cluster Tilting Modules and Finite Global Dimension of Endomorphism Rings
Let R be a Cohen-Macaulay ring and M a maximal CohenMacaulay R-module. Inspired by recent striking work by Iyama, BurbanIyama-Keller-Reiten and Van den Bergh we study the question of when the endomorphism ring of M has finite global dimension via certain conditions about vanishing of Ext modules. We are able to strengthen certain results by Iyama on connections between a higher dimension versio...
متن کاملHochschild Dimension of Tilting Objects
We give a new upper bound for the generation time of a tilting object and use it to verify, in some new cases, a conjecture of Orlov on the dimension of the derived category of coherent sheaves on a smooth variety.
متن کاملOn Monomial Algebras of Finite Global Dimension
Let G be an associative monomial k-algebra. If G is assumed to be finitely presented, then either G contains a free subalgebra on two monomials or else G has polynomial growth. If instead G is assumed to have finite global dimension, then either G contains a free subalgebra or else G has a finite presentation and polynomial growth. Also, a graded Hopf algebra with generators in degree one and r...
متن کاملRings with Finite Gorenstein Global Dimension
We find new classes of non noetherian rings which have the same homological behavior that Gorenstein rings.
متن کاملSemisimplicity and Global Dimension of a Finite von Neumann Algebra
We prove that a finite von Neumann algebra A is semisimple if the algebra of affiliated operators U of A is semisimple. When A is not semisimple, we give the upper and lower bounds for the global dimensions of A and U . This last result requires the use of the Continuum Hypothesis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus. Mathématique
سال: 2020
ISSN: 1778-3569
DOI: 10.5802/crmath.72